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Abstract

Recent development in the field of electronics has achieved a significant
decrease of price while increasing performance of the components. This
leads to a development of a multi sensor systems which includes sensor
networks. In this thesis a framework for multi purpose sensor networks
is conceptualized and subsequently implemented. The framework uses
Robot Operating System (ROS) in implementation of the network itself
and a Django Web Application as a user interface for the framework. The
functionality of the framework is demonstrated on deployment of a per-
manent temperature sensor network in measurement lab of our research
group. The temperature sensors are prototypes that were developed in
our research group and had to be calibrated before installation in the mea-
surement lab of our institute. A calibration experiment was conducted in
order to show specific use case. There were also two hypotheses tested.
First hypotheses states, that it is possible to replace one component in a
sensor without having to conduct a new calibration and the second hy-
potheses states, that the ambient temperature itself has no effect on the
measurement. In the end, both of the hypotheses were rejected.
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1 Introduction

A key competence of engineering geodesy is planning, organization and execu-
tion of measurement campaigns, generally speaking the data acquisition process
in a specific application. This provides the foundation for further in-depth anal-
ysis and evaluation to generate the required information. This information is
necessary to conclude the right decisions depending on the specific goal or task
of the application. In most applications, multiple sensors are necessary due to
the growing level of complexity. From an application point of view, a single
sensor is at the retreat. [1]

Due to the technological development over the last years, sensors and af-
filiated hardware has become cheaper, smaller and less power consuming. A
development, also driven by hot topics like Industry 4.0 and Internet of Things
(IoT). This also leads to an increasing number of sensors involved in data acqui-
sition tasks in engineering geodesy. Furthermore, permanently mounted sensor
networks required for real-time or near-real-time applications become more fea-
sible and economical. [1]

There are already several software solutions for separate applications which
are mostly developed for one specific task. The range of hardware compatible
with these solutions is not very wide and is not easy to use outside of the man-
ufacturer’s software. This represents another downside of current products, as
the software is often proprietary and closed source, which limits the community
driven development.

This invokes a question, whether it is possible, to create a framework for sen-
sor networks, that would be hardware and task independent. In this thesis, such
framework is conceptualized and implemented. As a case study, the framework
will be deployed as a temperature sensor network inside the measurement lab of
our institute which can increase the accuracy of laser distance measurement, as
the atmosphere, through which a laser beam propagates will be more accurately
described.

2 Sensor Networks

A sensor network is a set of sensors capable of autonomous operation connected
together in a network in order to communicate and exchange data with each
other. It is used to acquire state of an examined object by measuring physical
(paragraph Physical quantities, page 6) quantities simultaneously on spatially
distributed points. The data acquisition, depending on sensors, occurs at rela-
tively high frequency and can provide near-real-time or even real-time data. If
the spatial information about the individual sensor nodes is provided, one can
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inspect the behaviour of examined object in both temporal as well as spatial
dimension. [2]

A sensor network typically consists of following components:

• Sensor nodes, which provide measurement values

• Central computer, which manages the sensor nodes and stores the mea-
sured values

• Communication Network, through which the sensor nodes communicate
with the central computer and with each other

• An user interface software that allows the user to process the data

In following sections the individual components and their functions are described
in detail. Figure 1 shows a schematic representation of a sensor network, its
components and functions.

The range of applications in which sensor networks are deployed is very
wide. For example in environmental monitoring systems, which monitor air
pollution or water quality. Sensor networks can be as well used as a detection
systems, that help to prevent or detect imminent danger of a natural disaster
thus potentially reducing causalities and damage costs. Other good example of
usage case can be found in meteorology. In engineering geodesy, sensor networks
can be deployed in monitoring tasks. A total station can be considered as sensor
node as well, provided that the communication with the central computer can
be established.

Figure 1: Components of the sensor network

Physical quantities
Physical quantity is used in this thesis as a hypernym for all different types
physical quantities. These are for example:
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• Mechanical (force, acceleration)

• Geometrical (length, angle)

• Thermodynamical (temeperature)

• ...

Physical quantity in context of this thesis does not contain electrical quantities
like voltage, current or resistance. The reason for this is, that sensors gener-
ally convert physical quantities (other than electrical) into electrical quantities
(section 5.1). This way, it should not come to any confusion while reading this
thesis.

2.1 Sensor nodes

Figure 2: Schematic representation of an sensor node and its components

A sensor node is a device, that acquires a measurement value of some physical
quantity and assigns a time stamp to that measurement. The sensor node
consists typically out of four components:

• Probe

• Amplifier

• A/D converter

• Control computer
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Figure 2 shows a schematic representation of a sensor node and functions of its
components.

A sensor is a device that converts an analogue physical signal that into an
analogue electrical signal. The process of acquiring a discrete measurement
values is described in detail in section 5.1. The sensors can be implemented
either as a tiny single circuit board with all the components on one board, or
every component separately connected in a circuit, in which case it would be
wise to protect the non-probe parts of the sensor node in some sort of casing.

The advantage of the single board sensors is its compactness. These sensors
can be very small don’t have any cables or wires sticking out, which makes them
easy to deploy. The disadvantage is, that even if the probe were waterproof,
one can not submerge the sensor into a liquid, because of the open wirings.
This might also cause a failure when measuring in a cold environments and
bringing the sensor to a warmer environment, as the water droplets from the air
would condensate on the surface and cause corrosion of the wires. Advantage
of the multiple board design is, that one can easily tweak the sensor node’s
performance by combining different parts together. The downside is, that an
extra effort is needed, since such designs wouldn’t obviously work out-of-the-box.
The separate parts might be also much more susceptible to physical damage.
However with a suitable protection, the range of applications of such sensor
increases significantly.

The signal generated by the probes is very weak and has to be amplified.
The amplified signal is then processed by an analogue to digital converter (A/D
converter) which outputs a computer comprehensible digital signal. More on
this in section 5.2

The control computer receives the digital signal from A/D converter. De-
pending on whether the sensor node is connected to the network or not, it can
either store the data on its own file system or even in its own database, or it
sends the data over to the central computer. A user should not be interacting
with these computers directly. Therefore there is no need for external periph-
eries or displays. Single board computers are the most suitable computers for
this purpose, as they are small and mobile yet still can be treated as a standard
computer, which simplifies the configuration.

The sensor nodes should to be portable which introduces the problem of the
power supply. To ensure mobility of the device, the power consumption of the
components is minimized, so that the sensor node can be powered by batteries
for extended periods of time, or even by the means of energy harvesting, such
as solar panels.
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2.2 Central Computer and User Interface

The central computer is the most important computer in a sensor network.
It can be a common workstation or a portable laptop. Unlike sensor node
control computers, this computer has a standard (graphical) user interface with
peripheral devices such as keyboard, mouse and a display. It is connected to the
sensor network, and can be also used as a internet gateway, which can be used
for establishing a remote access or for time synchronization of the sensor nodes
(section 4.1.4). Main functions of the central computer in a sensor network are:

• Management of stored measurements

• Management of the sensor nodes and evtl. network configuration

• User Interface

The measurement data are sent from the sensor node to the central com-
puter, where the data are saved either into a file or a database. The database
can also contain data about the network configuration.

The central computer also provides a user interface for operating the sensor
network. An operator can start or stop the measurement sessions, or configure
the network for a different task, or process the measured data, as the central
computer might provide task-specific evaluation software.

One can set up multiple user accounts on the computer and assign them
access rights. The users can be also sorted into groups like visitors, operators
and administrators. If internet connection is available, the users can establish
remote access to the central computer. Visitors might be able to view the data,
operators might be able to start or stop their own measurement sessions and
manipulate the data from these sessions, and administrators would have rights
to change the configuration of the whole network and system, including the
ability to add or remove users and change their rights inside the system.

The control computer can also act as a web server. On such web server,
there could run a web application which provide the access to software for data
management and evaluation. It is also possible to set up a user based access
system on the web server. There are two advantages of a web server. Firstly,
the users remotely access the server and not the whole computer, so there is
a lower risk of the computer being misused. Secondly, the users access the
computer through their browser, which provides a simpler, more user-friendly
remote access, than e.g. ssh (Secure Shell) or Remote Desktop.
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2.3 Network

The main function of the network is to enable the sensor nodes to communicate
with the central computer and eventually with each other. The components of
the network can be connected by an ethernet cable, or wirelessly, using differ-
ent communications technologies, like WiFi, Bluetooth, or similar, depending
distance the signals need to travel. The network can be set up in two modes:
ad-hoc or industrial. The most important aspect of the network is, that every
device on the network must have an unique identifier, such as IP address.

If the network is run in ad-hoc mode, the devices on that network commu-
nicate directly with each other on peer to peer basis. It is easier to set the
network up in this mode but the more the devices on the network, the slower
the communication is. Another downside of ad-hoc networks is, that they use
up more resources, as it communicates with all device on the network. With
growing number of devices there is also an issue of interference.

The other possibility is to set the network up in an industrial mode, where
the computers communicate with each other through a central router. The set
up can be more tedious than ad-hoc network, but it provides a faster, more
stable and less power consuming communication. The interference effects are
also reduced, as the devices communicate over one device only - the router.

3 ROS

Robot Operating System or ROS is an open source framework for programming
robotic networks. It provides an elegant, easy and robust solution for connecting
many separate computing units together in a neatly structured network, thus
enabling all machines on the network to communicate with each other. This
framework, as the name suggests, comes from the field of robotics, but because of
its flexibility, it is possible to find applications in many other fields, engineering
geodesy including.

One of the key concepts of ROS is its modularity as the whole system consists
of many different packages, which makes reusability of the code simple. There
are already many packages available to use. In 2019, 11403 unique packages are
available in the free to use repositories [3]. In addition, many manufacturers are
aware of the impact of ROS, thus already providing ROS packages (drivers) for
their hardware. These packages are able to interact smoothly with each other
because ROS defines the underlying interfaces and protocols.
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3.1 Nodes and Topics

A ROS package consists of one or more ROS nodes, which are essential pieces
of code that solve a small part of the whole task. For example, a driver node
encapsulates some piece of hardware. On the other hand, an algorithm node
implements a methodical processing step. For example, a total station driver
node handles the measurement process and streams spherical coordinates to a
subsequent algorithm node, which converts these to cartesian coordinates. Sub-
sequently, another node transforms these coordinates to the project coordinate
system. A productive data stream is created by chaining multiple nodes, which
allows solving complex tasks using divide and conquer design paradigm. A
graphical representation (called ROS graph) of all ROS nodes is shown in figure
3.

Data and information between those nodes are exchanged through so-called
ROS topics. A ROS topic is a subject oriented abstract space or data stream.
A topic is strongly typed, which means that meta-information like structure
and type of the data is strictly defined in a ROS message. A ROS message is
a packet of structured information through which data is exchanged in a ROS
network. The structure of this message is fully customizable (section 4.1.2).
ROS provides several pre-defined message types.

Figure 3: Example of ROS Graph. An ellipse represents a node and topic is
shown as a rectangle.

Whereas a message defines the kind of data, a ROS topic is the data stream
through which nodes share data and information. It is possible for two or more
nodes to publish to the same topic as well as an arbitrary number of nodes
is able to subscribe to a topic and receive all published messages. Once a
message arrives at a subscriber node, the message gets decomposed and the
data is further processed according to the purpose of this specific node. ROS is
completely responsible for the underlying communication, so that the developer
can focus on the actual problem.

Every topic is visible in the whole ROS network. This is achieved by a
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central part of ROS, called the ROS Master that serves as ’broker’ who keeps
track about topics, subscriptions and publishers [4].

3.2 Parameters and Launch files

A ROS node should be developed as a reusable piece of code for a recurring
task or problem. No matter if it abstracts a hardware device or encapsulates a
specific processing step, it is good practice to define some configuration switches
or settings. For instance, one might design the measurement rate, thresholds
or processing parameters like constants or filter parameters. With such an
approach, it is possible to enable the program to an even broader range of
application and therefore improve its reusability.

These settings are generally called ROS parameters in the ROS terminology.
These parameters are stored and managed centrally, so that every node can
access its own private parameters as well as global or local parameters. At
execution time, the parameters are parsed by a parameter server. A parameter
server is a shared, multi-variate dictionary. Nodes use this server to store and
retrieve parameters at runtime. It is meant to be globally viewable so that tools
or nodes can easily inspect the configuration state of the system and modify it
if necessary.

This makes the key requirement for geodetic sensor networks of online ad-
ministration and configuration very easy, since changes at this central parameter
server are automatically propagated to the affected parts of the sensor network.

As mentioned above, one of the key concepts of ROS is its modularity. As
a consequence, a number of nodes and topics will be necessary to tackle a
specific task or to solve a specific problem. For different applications one might
need different sets of nodes that interact in specific ways with each other. To
represent/reproduce these variable applications (or use cases) ROS introduces
a helpful concept called a launch file, which is a XML file where it is specified,
which nodes should run, with which parameters and on which machine. An
example of such file is shown in listing 1. Before launching individual nodes,
it makes sure that all prerequisites (such as master and parameter server are
running) have been met.

Listing 1: Example of a launch file

<launch >

<machine address="10.11.12.13" env -loader="~/ws/

devel/env.sh" name="igros"/>

<machine address="10.11.12.20" env -loader="~ros/ws/

devel/env.sh" name="drone -pi" />

<machine address="10.11.12.21" env -loader="~ros/ws/

devel/env.sh" name="tps -pi" />
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<node machine="igros" name="db" pkg="igros" type="

dbNode.py">

<param name="bulkSize" value="100" />

</node>

<node machine="drone" name="imu" pkg="igros" type="

imuNode.py">

<param name="rate" value="200" />

</node>

<node machine="drone" name="gnss" pkg="igros" type=

"gnssNode.py">

<param name="rate" value="0.5" />

</node>

<node machine="tps" name="tps" pkg="leica_ros" type

="tpsNode.py">

<param name="type" value="MS50" />

<param name="reflector" value="GRZ4" />

<param name="rate" value="5" />

</node>

<node machine="tps" name="temp" pkg="igros" type="

meteoSensorNode.py"></node>

</launch >

3.3 Services

ROS Service is a node that communicates with other nodes on a request/respond
basis. Any node can send a request to the service node. The requests may
have any number of input arguments for the service node. The service node
processes this request and returns processed values to the requesting node. It is
also important to mention, that the services, just like topics are strongly typed,
but differ in the communication paradigm. Whereas ROS topic is used for data
streaming, ROS service works on request/response basis.

4 Implementation of the framework

The whole framework has been developed as a single software package called
IGROS which is a abbreviation of Ingenieurgeodsie Robot Operating System.
The package consists out of three separate components:

• igros ROS Package, which is responsible for the data acquisition of the
sensor network
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• igros Web Application, which provides the User Interface to the sensor
network

• database, that connects the previous two components together

In this section there is a detailed description of every component.

4.1 Igors ROS Package

Figure 4: Data flow in igros ROS package

The aim of the ROS package was to standardise the data flow (fig 4). There
are two separate steps in the data flow, first the actual data acquisition, which
happens in the sensor field and the data storage which happens in the cen-
tral computer. Since the variety of the sensors commonly used in engineering
geodesy is fairly wide (meteorological sensors, GNSS antennas, total stations,
ultra sound sensors etc.), the variety of the possible output formats is corre-
spondingly wide. This also implies a separate database for the every combi-
nation of the sensors. Igros ROS Package abstracts the possible outputs into
one common format. In the data acquisition step, output must be accordingly
reformatted, which requires some programming effort, whereas the data storage
step remains the same, as does the database.

In ROS, the two steps of the data flow is realised by two ROS nodes which
exchange the data via topics (section 3.1). One node acquires the measurements
from the sensors and the other node stores it. The topics, and therefore the
messages are physical-quantity-based.
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4.1.1 Data acquisition node

The function of this node is to run the code for reading the values from the
sensors, assign a time stamp to the value and compact the data into a ROS
Message and publish the message in a corresponding ROS topic.

The code that is used to communicate with the sensor has to simply return
the measurement value. This code can be written by anyone: the manufacturer
of the sensor, or internet community member as well as the user, that wants to
use the sensor inside the igros framework. It only has to output the value.

The data acquisition node is affected by several ROS parameters. Two
of them specify how one single value is produced: measurement rate f and
measurement time t. The measurement rate describes, how often is a value
produced and measurement time describes, how long should the data acquiring
code be run. The data acquisition node runs the code for reading the sensors
every 1/f seconds for t seconds. This produces an array of values from which
the average represents the resulting value that is then going to be processed
further. The f and t must be selected that 1

f > t.

The data acquisition node, when collecting the values for the array also
records the time stamps. The resulting time stamp assigned to the measurement
value is the average of these time stamps. It is important to mention, that the
in order for this to work, the control computers of the sensor nodes have to be
synchronised, which is often not an easy tasks. More on the time synchronisation
in section 4.1.4

The data acquisition node also keeps record about the number of measure-
ment taken to produce one value and the standard deviation of the values, which
indicate, whether there were some outliers that might affect the resulting value.
These values indicate the quality of that measurement value.

When the value, number of measurements, standard deviation of the mea-
surements and time stamps are assembled, the data acquisition node compacts
the message into a custom defined ROS Message and publishes it into a corre-
sponding topic.

4.1.2 Messages

As mentioned before, the structure of the message is fully customizable. The
message definition is stored in the .msg file, which is a simple text file that
contains the structure of a message type. For example the definition of the
temperature message is shown in listing 2

As we can see, there are two fields: header which is is of type igrosHeader
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Listing 2: Defining .msg file for temperature message

igrosHeader header

float64 val

and val, which is a 64 bit float that holds the actual measurment value produced
by the sensor. The type igrosHeader is a custom type, which is defined in its
own .msg file (listing 3). The header is a whole message encapsulated in another
message. The messages for the other quantities are designed analogously.

Listing 3: Defining .msg file for igrosHeader message

Header header

int32 sensor_id

int32 job_id

int32 n

float64 std

The igrosHeader consists of five fields: from sensor id which holds infor-
mation about the sensor that made the measurement, from job id which holds
the information about the job (section 4.3.2) for which the measurement was
made and from header, which is of pre-defined type from ROS Package std msgs.
n and std are the parameters of the quality of measurement and describe the
number of measurements from which this value was computed and the standard
deviation of those measurements.
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The std msgs/Header message consisting from timestamp which is of type
time which is a two-integer that consist of seconds and nanoseconds. The other
two fields of the Header type are frame id which is a string identifies spatial
reference system and seq which is a unsigned 32 bit number representing con-
secutively increasing ID of a message. Following schematics represents the whole
message structure:

tempMsg.msg

igrosHeader header

Header header

uint32 seq

time stamp

string frame id

int32 sensor id

int32 job id

int32 n

float64 std

float64 val

4.1.3 Data storage node

This node basically subscribes to all topics and stores the data into a database
However, storing each value separately as it comes, can cause problems at higher
measurement rates, since the connection to the database has to be built up from
scratch every time. We have implemented a class DataBuffer which consists of
two buffers. The incoming messages are stored into one of the buffers until it’s
full. When the buffer is full, the incoming data get stored into the other buffer
meanwhile the messages in the full buffer get decomposed and are stored in one
bulk operation into the database. This way the node doesn’t have to connect
to the database so often. The length of the buffers can be set via parameter to
the constructor. There is a DataBuffer object for each topic. The DataBuffer
objects are initialized at start of the DataStorageNode and the length of the
buffer can be set by the user via program arguments resp. via parameter server.

4.1.4 Time synchronization

Since the controlling computers of the sensor nodes do not posses hardware
clock, the system time is into a file on the hard drive at shut down and picked
up again at boot up. This can lead to severe time desynchronization between
the computers, which poses a problem, because these computers assign the
time stamp to the measurements. Therefore the central computer is used as
a NTP (Network Time Protocol) server for the sensor node computers, which
synchronize their time with the time of the central computer. The central
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computer might or might not be connected to internet, which does not matter,
because the central computer should have hardware clock that keep running
even if the computer is turned off.

4.2 Django Web Application

Assuming that the user has already correctly set up database, the sensor network
can be operated with the ROS package only without any programming skills.
However, that would be a very tedious work. The user has to make a lot of
decisions in a variety of processes on different components, for example, setting
measuring rates of sensors must be done on the control computers. A control
interface provides a way to neatly set all these parameters in a graphical user
interface in one place. Figure 7 graphically represents the usage levels of ROS
and relevant skills (yellow and green boxes). The blue box represents the usage
level of the IGROS and required skills to use it.

Graphical User Interface

• Internet
Browser

• Smartphone

• Tablet

• Laptop

User Level

• Launch files
(XML)

• Configuration
Files (ASCII)

Development
Level

• ROS Package
Components

• Python

• C++

PostgreSQL Database

Figure 7: Usage levels of ROS resp. IGROS

The control interface could optionally be accessible over the internet so that
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Figure 8: Handling of a HTTP Request in Django

a user does not have to be physically present at the computer that is running the
control interface which is the central computer of the sensor network. The easiest
way to make a graphical control interface remotely accessible is by creating some
web application that could be accessed from any device on any operating system
in the internet browser.

The control interface must have access to measured data. The most general
way to ensure this is by creating a database. The control interface should be
able to manage the database.

4.2.1 Django

Django is a free, open-source high-level python web framework that encourages
rapid development. [5]. It is based on the model-template-view paradigm. It
also provides excellent options to manage the database. In following sections
the main components of Django are discussed.

Views
A view in Django terminology is a piece of code that generates the HTTP
(HyperText Transfer Protocol) response (Figure 8). In its simple form it is a
python function, in more complex and general form it is a python class. This
class is a subclass of base View class that has a method as view() which, when
called, generates a HTML (HyperText Markup Language) file. The view, (either
as function or the as view() method ) gets called when the server receives a
HTTP request, requesting sepcific URL (Uniform Resource Locator). The server
looks into the django’s urls.py file which contains the URL patterns and resolves
the URL to a view that gets subsequently called. The view executes its code,
that generates a HTTP response and either returns the response to the client
or redirects the HTTP request to another view.
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Templates
If the view returns a HTML file, it is created from a template. A template is a
HTML file that contains the structure of a page without specific content with
place holders for the actual content. The view gets the content from elsewhere,
most usually from the database. There is a special Django template language
that adds more functionality to the content place holders like for loops, while
loops, if-statements etc. For example: a user profile page contains a photo, name
and date of birth. In the template there would be HTML code that contains all
the required HTML structures, like the <img> tag, a table for nice display of
the name and date of birth. The src attribute of the <img> tag, which specifies
the path to the profile picture on the server file system, would contain a place
holder, that gets filled in by the view.

Listing 2: Example Django Template Language

<img src="{{ profile.img_path }}">

The listing 2 shows an example of the django template language in a HTML file.
The double curly braces denote, that the value of the variable profile.img path
should be filled in between the braces. The content is parsed to the template by
the view as a dictionary. In the template, one can access the values of variables
through this dictionary. The values can be of any type, dictionary included.
So in the example, in the content dictionary there is a variable profile, which
is a dictionary itself, and contains key img path. The value of this key will get
printed into the HTML file that will be parsed by the server to the browser.

The templates don’t necessarily have to be whole pages. It can be only parts
of a complete web page. One can link the templates together so there could be
templates for separate components, like menus, panels, tables etc. that will then
make up a whole page. This makes the code extremely easy to maintain.

Models
When generating a HTML document, the view must fill in the gaps in the
content. The content comes usually from the database. Django obtains data
from database via models. Every table in the database has a django model,
which is a python class, that abstracts a table entry. The class consists from
fields that correspond to table attributes and the instances of this model class
have the values of their fields filled by the values from the database entry. So,
essentially we are creating a model class that can represent a database table.
Django reverses this line of thinking, because it creates a database table based
on a class. This way, Django can operate with many different DBMSs (Database
Management System), because the model always stays the same. The fields of
the model classes are predefined objects, (IntegerField, FloatField, CharField,
Foreign key etc.) so that each binding to a specific DBMS can create correct
structures in the database.
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When the database is queried by the view for template content, Django
returns a QuerySet object. This is a very useful data structure that consists of
the instances of the model classes. This data structures allows operations like
filtering, slicing, sorting etc.

Listing 4: Example of a model class for measured value

class Values ( models . Model ) :
timestamp = models . DateTimeField ( primary key = True)
va l = models . F l oa tF i e ld ( )
property = models . ForeignKey ( Property , o n d e l e t e=models .

CASCADE)
job = models . ForeignKey ( Job , o n d e l e t e=models .CASCADE)
senso r = models . ForeignKey ( Sensor , o n d e l e t e=models .

CASCADE)

4.2.2 Design/bootstrap

Since the control interface should be accessible from any device, the web pages
have to be designed responsively. This poses a great challenge but luckily there
are frameworks for responsive designs. One of the most commonly used frame-
work is Bootstrap. Bootstrap is the most popular HTML, CSS (Cascade Styling
Sheet), and JavaScript front-end framework for developing responsive, mobile-
first websites. [6] It is free to use and is open-source.

Front-end components
Bootstrap provides a large number of pre-programmed components, like but-
tons, menus, user input dialogues, navigation bars or paginations etc. These
can be easily styled using CSS. The functionality of the elements is provided by
the library but can be easily extended with JavaScript. All the components will
also responsively transform into different design depending on the screen size.
For example menus look different on a cell phone than on a Ultra HD screen,
even though the developer has declared it in code only once. o

Bootstrap templates
The bootstrap’s modularity allows the developer community to encapsulate
complete web designs into so called templates (not to confuse with Django
templates). There is countless number of templates available today, some of
the templates are free to use. We have chosen the SB-Admin1 template for our
control interface as it contains pre-programmed elements suitable for the needs
of a control interface of a sensor network.

1Live preview: https://startbootstrap.com/previews/sb-admin/
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Figure 9: Home view user interface

4.2.3 Home View

This is the first page (figure 9) that user will see after loading the interface.
There are two main elements on the page: the side panel which contains links
to the long-term settings and a list of jobs. There is also a header panel and a
footer.

Job selection
The job table is a list of all jobs in the database. If a job is currently acquiring
measurements, the job is highlighted. One can sort the jobs by any attribute,
per default they are sorted by their ID. In the search field, the jobs can be filtered
by entering text. The search occurs in all attributes so it is not necessary to
specify, for which attribute we are looking for.

There are also listing options. On top of the table there is a input field where
user can specify how many entries are displayed on one page. The pages can be
selected in the bottom-right corner of the table. Above the table section there
is a button to create a new job.

The job table is part of the bootstrap template and is therefore fully imple-
mented in JavaScript, so it is not necessary to send any requests on the server
when modifying the table content by searching or sorting, so there are no page
reloads necessary.

Side panel
Under long-term settings one can understand configuration of the physical quan-
tities and sensor types (section 4.3.5) and their relations. The user can edit or
delete currently available entries or add new ones. There are also settings that
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Figure 10: Job view user interface

control the data buffer length (section 4.1.1) and displaying parameters for the
chart in Job view (section 4.2.4)

4.2.4 Job View

This page gets loaded when the user selects a job. There is again the side panel
that contains job related settings, and the main area, where that consists of
four cards. In the top right corner there is an operation panel that consists of
buttons for managing the job. There is also the header panel and a copyright
footer.

Data viewer
The data chart is created by a JavaScript library nv3d 2. It consists of two set
of axes. The bottom axes are used to select a specific time interval that the user
wants to inspect closer. Defaultly the whole timespan is shown. The user can
make the selection either by drag and drop or by moving the sliders to desired
locations.

The top axes display selected data. There is a time series for each sensor
and quantity. Unfortunately stackable y-axes (e.g. for each quantity) were not
implemented yet, but it is planned in the future. This causes a problem when
the multiple quantities have been recorded. For example, when the user has
measured temperature in range from 10◦C to 20◦C and atmospheric pressure
typically in range around 1000 millibars, the temperature series seems com-
pletely flat. To enable a user to inspect the temperature series as well one can
turn the pressure series off. The chart gets re-drawn with the optimal scaling

2Live preview:http://nvd3.org/examples/lineWithFocus.html
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of the y-axis for the temperature series. One can turn any series on or off by
clicking the corresponding legend entry in top-right corner. The time series are
per default all turned on.

The chart has also a inspection cursor so that user can hover over the chart
to inspect the exact values of a series to specific time stamp.

There is also a option to switch the chart into full screen mode, which is not
very well implemented yet, as it simply stretches the chart area over the whole
viewport, although the interactivity of the chart is still functional.

The data for the chart are queried from the database. Django returns the
data in form of a QuerySet. This QuerySet gets serialized to JSON and gets
printed into the HTML file that the server generates and parses to the browser.
However, if the there is too much of data requested from the database, it can
lead to long load times of the page. Therefore there is a user-settable limit for
the maximal length of query set.

Job info
Taking a look at figure 10, in the top left card, there are the general data about
the job displayed. It displays the values of the attributes of the job in the
database.

Component info
In the bottom left part there are tabular information about the associated com-
puters and sensors. It is based on bootstrap nav-tabs. There is a tab for every
computer associated with the job. Under the tab selection there are computer’s
attributes from the database tabularly listed. Underneath this table there is
a list of sensors associated with that computer and their attributes. In future
development is planned, that clicking the entries in these tables will take the
user to configuration of these components.

RQT Graph
In the bottom right is a empty card. This card should contain the RQT Graph
of the ROS network. There is a possibility to export these graphs to SVG in
the RQT GUI but the automatization of this process has not been implemented
yet. Further development should make the graph interactive so that the user
could see the messages upon hovering over a topic in the graph.

Sidepanel
On the side panel there are links that take the user to the configuration of the
components, that are associated with the job.
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There is also a link to the export page. The user can export the job data
for further processing. There are some options the user can filter the exported
data, e.g. specific time range, or only some sensors or quantities etc. The
user can also specify in which format the data should be exported. Currently
implemented export format is CSV with various delimiters, but there are more
formats planned e.g. MS Excel ..xlsx, .txt, .pandas dataframes, numpy arrays,
.mat for MATLAB scripts.

Job control
On the right side above the data chart card, there is a panel consisting of four
buttons.

The first green button starts the measuring session. After the button gets
clicked the server collects the information about job and gets associated ma-
chines and sensors. With these informations a ROS launch file is generated.
Then the server starts a roslaunch sub-process that launches the generated
launch file. When the data acquisition is running, the button changes and is
used for stopping the process. When clicked, the roslaunch sub-process gets
simply killed.

The next button takes user to the job configuration, where the job attributes
can be edited.

When having a job with a lot of computers and sensors, setting it up can be
a tedious work. We have therefore implemented a job cloning which by simply
clicking the clone button creates a new job with different name but with same
component configuration.

Last button on the panel deletes the job. This deletes not only the job but
also the associated components in the database.

4.3 Database

The two main functions of the database is to store the measured values and the
sensor network configuration. Since the control interface is a web application
based on Django, which is a python package, we were looking for relational
database management system that works well with Django/Python. We have
decided for PostgreSQL as it meets all of the requirements and the author had
already previous experience with PostgreSQL. Figure 11 shows the implemented
tables and their relations.
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Figure 11: Implemented database model

4.3.1 Values

This table is the most important as it contains the measured values. The pri-
mary key of this table is the timestamp. Every value is then associated with a
job, physical quantity and sensor that made the measurement. The measured
value is available in the val attribute with two quality parameters n which
describes, how many measurements were made by the sensor to provide this
value. The std attribute is the standard deviation of the set of measurements
from which the value was computed from.

4.3.2 Jobs

A job organises related data into a directory-like structures and makes adding
meta-information possible. Every job in the database has its own numerical
unique id. The name attribute allows the user to assign the job a name so that
the user doesn’t have to remember the job id. The path attribute describes,
where on the file system the job related files (data exports, launch files etc.) are
stored. The DateTimeFields: created, started, stopped store dates and times
of creation, begin of measurement session and its end. The finished attribute
marks whether the job has been finished, meaning that these won’t be no more
measurement sessions carried out, but the job is not ready to be deleted yet.
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4.3.3 Machines

This table represents the computers in the network. The primary key is an
integer id. Every machine is associated with a job over the job id. The other two
attributes store the IP address of the computer and the name of the computer.
It is important to mention here, that the machine is here a bit more abstract
concept than one would intuitively assume. Even though entries in this table
describe a computer, one has to realize, that a machine is associated with a
job, which means that there could be many entries in this table describing the
same physical computer. However these entries will differ in the job id. Every
job has its own set of machines, even though they describe the same physical
computers.

4.3.4 Sensors

The entries in this table describe sensors and their configuration. Since the
same physical sensors can be used in multiple jobs, the level of abstraction here
is same as by the computers in the machines table. Every entry in this table is
therefore associated with one machine and the machine is then associated with
the job. This way is the job - sensor relationship established. Themachine id
attribute associates a sensor with a computer.

The physical connection of the sensor to the computer must be described in
the database as well. For this purpose there are attributes bus, hw address and
i2cAddress. The bus attribute has two possible values: i2c or USB since these
two types of the interfaces have been used so far. If the sensor is connected
over i2c bus, then the i2c address has to be additionally specified as well. The
hw address attribute describes the system address of the bus interface which is
typically something like /dev/ttyUSB0 or /dev/i2c-1.

Every entry in this table is assigned a unique number id and user can specify
a name of the sensor, which is easier to remember. To allow spatial referencing
of the data, the sensor can be provided with 3D coordinates triplet in projects
spatial reference frame.

Every sensor is also provided with its sensor type (section 4.3.5).

4.3.5 Sensor Type

This table describes the properties of the physical sensors that do not vary with
job or its purpose in a project. It also establishes link between the physical
quantities the sensor measures.
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The entries have their unique id. The user can also provide a name for the
sensor type and more detailed description of the sensor type like manufacturer,
type, product number etc.

4.3.6 Quantity

This table describes quantities provided by sensors. The entries use unique id
as primary key and allows user to set the quantity name (to give the user the
freedom to use full name of the quantity or to use its abbreviation etc.) and
its unit. The attribute sortOrder describes listing or displaying priority in the
control interface. Lower the number, higher the priority.

4.3.7 SensorTypeQuantity

This table is fully abstract one as it’s purpose is to link the sensor type with
the quantities it measures.

5 Electrical Sensor and Calibration

An electrical sensor is a device that converts a general physical signal into an
electrical signal. This electrical signal can be further processed and digitalized,
so that the signal becomes computer comprehensible. However, the digital signal
loses the physical context. The physical context of the digital signal is recovered
by calibration. Calibration is a process of finding a characteristic curve of the
sensor, which describes the functional relationship between variation of the input
physical quantity and sensor output. [8] Figure 12 shows the the workflow of
an electrical sensor.

Figure 12: Process of data acquisition and calibration

5.1 Signal conversion

The examined object provides a general physical signal. This signal is a con-
tinuous function of time and has units of some physical quantity, e.g. meter,
kelvin etc. A sensor converts this signal to a continuous electrical signal. The
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electrical signal has a unit of electrical quantity, such as volt, ampere, or hertz
etc. The output physical quantity depends on the construction of the sensor as
well as on the purpose for which it was constructed. There are three main types
of electrical sensors [7]

• Resistive sensors

• Inductive sensors

• Capacitative sensors

which produce the electrical signal based on variation of the respective electrical
quantities. This does not mean, that the sensor outputs these quantities. In
most cases the sensors output related voltage change.

Resistive sensors produce their output signal based on a variation of the
resistance. The variation of the resistance is caused by the variance of the input
physical signal. An example of such sensor is a resistive thermometer.

Central component of an inductive sensor is a coil or coils with variable
inductance. The resulting signal is produced either by variation of relative
permeability of the coil core, which can be moved along the coils axis, or, if
using two coils, by variation of the distance between the two coils. These sensors
are used for example for measurement of angles.

Capacitative sensors produce their signal based on variation of capacitance of
a capacitor. The variations can be caused by moving the capacitor plates away
from each other, by moving the plates in their own planes (the vertical distance
between the plates stays the same, but planes are misaligned), or by changing
the dielectric between the two plates by introducing an object in between the
plates. An example of an capacitative sensors is a touch displays of smartphones.

5.2 Signal processing

A sensor provides a continuous electrical signal. This analogous signal is usually
very week and has to be amplified to a wider voltage range. However the signal is
typically afflicted by a measurement noise. As the signal gets amplified, the noise
is amplified as well. The amplification is described by an amplification function.
The parameters of the amplification function are either fixed by the hardware,
or can set by the users by, for example, setting trimmer potentiometers.

The signal can be filtered by methods of signal processing. For example,
typical high frequency noise can be filtered out by low pass filters like moving
average or moving median.
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Once the signal is sufficiently amplified, it is converted to a digital signal.
The conversion happens in an analogue to digital converter (A/D converter)
which samples the values of the analogous signal in discrete timestamps (Figure
13).

t[s]

U [V ] DN

4.98 V 65274

0.17 V 2228

sampling interval

Figure 13: Conversion of analogous signal to digital

A/D converters have maximal sampling frequency which describes how often
can the analogous signal be sampled. The A/D converter maps the value of the
signal at a discrete time stamp to a digital number. It has a given digital number
range, typically from zero to some power of 2 minus one, e.g. 0 - 216−1 = 65535
= 16 bit range. The digital number range defines, how fine can the codomain
of the analogous signal be sampled.

The digital number itself doesn’t have any physical context. The physi-
cal context must be established by specifying the actual voltage range of the
analogue signal, which is then linearly mapped to the digital number range.
For example 0 - 5 Volts range is mapped to digital number range of 16 bits,

meaning, that 0 V maps to 0 DN and 2.5 V to 216−1
2 = 32767 DN and 5 V to

216 − 1 = 65535 DN giving us resolution of 5
216−1 = 76.293µV . This way a DN

can be considered as having a physical context.

5.3 Calibration

Now, when the physical context of the digital number has been restored, if only
in context of a electrical quantity, it is time to find the relationship between
the digital numbers and the originally measured physical quantity. This rela-
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tionship is described by a characteristic curve of the sensor which is a function.
This function takes the electrical quantity provided by the sensor as input and
outputs the desired physical quantity. Since the characteristic curve is usually
modelled as a linear function, it has following form:

p(E) = kE + d (1)

where p is the physical quantity, E the electric quantity and k and d the linear
parameters. [8]

The characteristic curve of a sensor is sensor-specific. Since the sensor is
composed of many components, replacing one of the components should result
in different characteristic curve.

The parameters of the line are determined in a calibration measurement,
where a sensor with unknown characteristic line measures in same conditions
as a sensor with known characteristic line. Such calibration measurement was
done for this thesis and is described in section 6

6 Calibration Experiment

6.1 Instruments

6.1.1 Sensors

We have built three sensor node prototypes. In this section are described the
components of the node as well as their configuration.

The probe (fig. 17(a)) is a Pt1000 resistance thermometer. It consists of
a platinum wire wrapped around a ceramic core covered in a protective steel
housing. Since platinum is very expensive, the wire is very fine. The reason
one uses a fine platinum wire in resistance temperature probes is, that the
resistance-temperature relationship is very accurately known.[9] Pt1000 means,
that at 0◦C, the probe provides resistance of 1000 Ω [10]. There are two wires
going into the probe that are compacted into one, about 150 cm long cable. The
ends are stripped of the protective isolation so that the probe can be connected
or soldered to a sensor circuit.

In order to amplify the signals from the probes, which are very weak, there
were Pollin Electornic GmbH PT1000 3 amplifiers used. (fig. 14) These ampli-
fiers were set to provide analogue voltage output from 0 V to 5 V. There are
two trimmer potentiometers on the amplifier that control the parameters of the

3Data sheet: https://www.pollin.de/productdownloads/D810144B.PDF
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amplifying function. Since the function is linear, the potentiometers control the
slope of the line and its offset. The voltage span of the amplifier was mapped
to temperature span from approximately -20◦C to +70◦C 4

Figure 14: Used amplifier Pollin Pt1000 with output from 0-5 V

In subsequent digitalisation of the signal were deployed the Texas Instru-
ments ADS1115 5 A/D converters, (figure 15), which have i2c interface and
produce 15 bit digital numbers. The digital number range is mapped to voltage
range of the amplifier, which has the maximal output voltage of 5 Volts.

Figure 15: Used A/D converter TI ADS1115 with i2c interface and 15 bit output

4Configuration on bottom of page 6: https://www.neuhold-
elektronik.at/datenblatt/N7975.pdf

5Data sheet:http://www.ti.com/lit/ds/symlink/ads1115.pdf
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Figure 16: Circuit diagram of the protective box housing the A/D converters
and amplifiers

Some of the prototypes were furnished with a small protective box, providing
protection against physical damage. Figure 16 shows schematically how the
components are connected together inside the protective housing and the boxes’
inputs and outputs, whereas figure 17 show the realisation of the schema. The
probe cable goes into the box which makes the placement of the probe easier and
provides a cover for the components that are susceptible to physical damage.
The protective box also provides longer wiring for other meteorological sensors.
Each prototype was connected to a separate control computer. The numerical
suffix in the prototypes name designates, which of the control computers was
the prototype connected to.
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Sensor unit range min range max covered
GMH 3750 ◦C -20 70 yes

B+B 40 V (DN) 0 V 0 DN 5 V 215 DN yes
B+B 50 V (DN) 0 V 0 DN 5 V 215 DN yes
B+B 60 V (DN) 0 V 0 DN 5 V 215 DN no

Table 1: Used sensors and their parameters

Figure 17: The complete B+B sensor prototype, where (a) is the probe, (b) the
amplifier,(c) A/D converter, (d) control computer and (e) protective box

For the controlling computers we have used Raspberry Pi Model 3, 6 as our
institute posses a few of them. The three computers were labelled 40, 50 and
60. Since every prototype was connected to separate computer, the prototypes
were assigned names in accordance with their controlling computes.

As reference sensor we used a Greisinger GMH 3750 sensor with a Pt100
probe with range from -20◦C to 70◦C with accuracy better than 0.07 ◦C 7

(figure 18)

6Home page: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
7https://www.greisinger.de/files/upload/en/produkte/kat/5.pdf
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Figure 18: Reference Sensor Greisinger GMH 3750

6.1.2 Climatic chamber

The reason why we needed a climatic chamber is, that the reference sensor probe
and the prototype probes have different masses, which means, that the probes
have different heat capacities. This causes the probes to warm up and cool
down at different rates. That means that reference values do not correspond
to the measured values during temperature change and making data from these
intervals unusable for the calibration. A climatic chamber enables us to create a
stable environment for long enough periods of time for the probes to acclimatise.
The other considerable advantage is, that one can set temperatures above, as
well as bellow freezing point which could not be achieved in any day-to-day
appliance, such as fridge or oven (which aren’t capable of creating a stable
enough environments for such experiment anyway). This way, we can acquire
all needed data without having to move the probes between two appliances.

For the experiment we used a Weiss WK3 8 climatic chamber (fig. 19) that
is in possession of the Federal Office of Metrology and Surveying (BEV) which
kindly allowed us to use their climatic chamber for our experiment.

6.2 Experiment

Since the sensors are to be deployed in the measurement lab of our institute,
where the atmospheric conditions are fairly stable we have decided not to mea-
sure on the whole measurement range of the reference sensor but only the range
from -10 to 40 ◦C with 6 stabilized measurement points (every 10 degrees). The
measurements outside this range should be considered less accurate because of
the extrapolation, since the characteristic line is defined inside the interval -10
to 40 ◦C. As mentioned before, the prototypes are to be deployed in a very

8http://www.weissfr.com/fr/download/Enceinte-climatique-simulation-environnement-
Weiss-WK3-0-anglais.pdf
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Figure 19: Climatic Chamber Weiss WK3 in BEV

stable environment with temperature around 20 degrees which lies well inside
the calibration range.

This means, that after setting the temperature in the climatic chamber, it
takes time for the chamber to heat-up or cool down to a given temperature and
stabilize. Afterwards the sensors have to acclimatise on the temperature as well.
Each measurement point has taken between 30-40 minutes to acquire with at
least 10 minutes of stable data. The measurement rate of all sensors was set to
1 Hz.

The goals of the experiment were:

1. Find parameters of the characteristic lines of the sensors

2. Test, whether we can use the same calibration parameters for two different
amplifiers and A/D converters of the same type.

3. Examine the effect of the temperature on the hardware parts of the pro-
totypes.

Because of the second goal, we needed to carry out the experiment twice.
The two measurements were stored to separate jobs. The data of the first
measurement is contained in job 124 and the second in job 126. In job 124,
sensor B+B 60 has been deployed with different A/D converter, than in job
126. Moreover, to address the third goal, in job 124 the A/D converters and
amplifiers of sensors B+B 40 and B+B 50 were placed inside the chamber,
whereas in job 126 only the probes were kept inside the chamber.
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The experiment (fig. 20) took place on December 19 2019 approx. from 8:30
to 15:00 in the building of the Federal Office of Metrology and Surveying (BEV)
in Arltgasse 35 A-1160 Vienna.

Figure 20: Ongoing experiment. The climatic chamber has several inlets, filled
by cylindrical foam lids, that allow the probes to be inserted.

6.3 Evaluation

6.3.1 Evaluation module

We have written a separate python module for evaluation of the measured data.
This module contains data-structures and methods for fitting, plotting and fil-
tering. It also contains methods for performing various statistical operations.
In this module there are two basic data-structures:

• Series

• Calibrator

as well as several helper functions.

6.3.2 Series

The Series represent a time series of a quantity. The elements of a time series
are data points, which consist of a timestamp and a value. The data in the
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series object are chronologically ordered. It proved advantageous to implement
this data structure as two lists:

• Timestamps, list of datetime objects

• Values, list of floats

rather than as single list of objects with two fields. This implementation simpli-
fies the access to values by timestamps via the getitem () method. We have
implemented the method ourselves, so that it is possible to access values be-
tween two timestamps. If the exact time stamp that is being requested does not
exist in the series, the method locates the nearest two data points and returns
the linearly interpolated value to the given time stamp.

The data structure contains methods for dumping the data into a csv file
on the file system, that preserves the chronological sorting. These files can be
then very quickly read from the file system without the sorting procedure, which
might take some time and therefore slow down the evaluation.

When a new value is introduced into the series, it is placed into the correct
position in the series, so that the object stays chronologically consistent.

The Sereis objects have properties that can be accessed as attributes, such
as:

• number of values

• maximum value

• minimum value

• mean

• standard deviation

• variance

• autocorrelation

These properties can be easily printed to the screen by single statement by call-
ing the print stat function. There is also a function for computing the histogram.
Series objects also have several filtering functions like:

• median filter with settable size of an uniform kernel

• moving average with settable size of an uniform kernel
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• filter which selects values by user defined logical condition

The filtering functions can be chained into one statement. There is also a func-
tion that selects values based on time stamps. This differs from the getitem ()
method, since the getitem () method can take only a single time stamp and
interpolates the values if needed, which the other function does not.

One can also easily compute the temporal derivative by calling the first derivative
function. There is also a function that multiples all values of the series by a poly-
nomial. This is useful e.g. when applying the calculated calibration parameters
to the uncalibrated series.

There are also two plotting functions. The plot function simply plots the
series. The user can also specify, which axes object (figure) should the Series
object be plotted into. The other plotting function plots a histogram of the
values of the series.

6.3.3 Calibrator

The calibrator class is the class in which the fitting takes place. Basically it
consists of two Series object, one contains the reference values and the other the
observed values. The constructor of this class calls a function, that computes
a fitting polynomial and stores the computed parameters as well as quality
parameters as attributes of the object. The order of the fitting polynomial
is based on an optional argument, whose default value is one (a line). Other
attributes of this class are specifying additional information about the two series.
For example, one can set the name and colour of the two series, which is helpful
while plotting, as the plotting functions automatically create legend entries,
titles etc..

Apart from plotting functions there is the function poly fit that computes the
fitting polynomial. This function is called in the constructor, when the object
is being initialized. The fitting procedure is described in detail in section 6.3.8.
The method contains two encapsulated methods that are used only inside the
poly fit. One method computes the initial estimates for the parameters and the
other performs a test and returns a boolean value whether one more iteration
is needed or not. (Section 6.3.8)

All the other methods of the class are plotting methods. All of these meth-
ods have an argument that specifies, into which figure should be plotted. The
methods are:

• plot series, which plots the two series into one figure. The user can deter-
mine, whether the two series are plotted to scale, or whether both series
should have separate ordinate with different scaling.

39



• plot ref vs obs, which plots the values on a plot with reference on the
abscissa and observations on the ordinate, since it should represent the
relationship between the two. In this dimension takes the fitting place.

• plot fit, which plots the same as the plot ref vs obs and additionally the
fitting polynomial

• plot residuals, which plots the residuals series of the fit

• plot residuals histogram, which plots the histogram of the residuals.

• histogram, which plots the histogram of the both series into one plot.

6.3.4 Data formatting

Although the igrosHomer WebApp has an exporting function, it exports the
data only to formats that aren’t suitable for the evaluation module, since the
module is not a part of the igros software package. One can use the igrosHomer
to export the data into a csv file, which is then fairly simple to reformat to make
the data usable for the evaluation module. The evaluation module also provides
a function that reformats a simple tabular output from the psql command, which
can be used to export the data directly from the database, to the format that is
compatible with the evaluation module. Once the data have been successfully
read into Series object, it can be saved on the file-system into a file, that is then
easily read by the evaluation module and it’s structures.

6.3.5 Raw data

(a) First measurement (Job 124) (b) Second measurement (Job 126)

Figure 21: Raw measurements. The blue-ish lines are the observed values and
are related to the right axis, The red line represents the reference values and is
related to the axis to the left.
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Figure 21 display the raw measurements recorded during the experiment.
Table 2 lists the variance parameters of the raw measurements and figure 22
represent the variance parameters graphically. At the first look it is clear, that
in the first measurement (Job 124 , fig. 21a) the B+B 40 sensor has failed as
the temperature approached zero degrees. One can suspect, that the failure was
caused by the low temperature, because in the first measurement, all the B+B
40 sensor components (apart from the control computer) were placed inside
the chamber. The temperature variation causes expanding and shrinking of the
materials, so maybe one of the circuit board components might malfunction due
to the rapid shrinking, not to mention, that this behaviour of the prototype has
been observed on several occasions before. This prototype is the oldest one and
has been transported several times in unsuitable cases during the development
process before being furnished with a protective box. The other prototypes are
much younger and have not been deployed as extensively as the original one.
Nevertheless the data up to 10 degrees seem usable.

The age of the first prototype (B+B 40) is visible in the amount of variation
of the series, which is caused by signal noise. To be able to compare the amount
of noise, one has to compute a moving average of the series(kernel size 51) and
subtract it from the original series (fig. 22). From the resulting series one can
inspect the variation parameters of the series. Since the B+B 40 sensor exhibits
obvious outliers at the end of the series, these values are filtered out as well, so
that the resulting parameters are not distorted by them. The resulting values
are listed in the table 2.

Job 124 Job 126
B+B 40 B+B 50 B+B 60 B+B 40 B+B 50 B+B 60

number of observations 9975 10649 10667 8219 8736 8809
standard deviation [DN] 51.5809 30.8352 10.6180 53.0864 29.9175 25.0124

Table 2: Variance parameters of the series

From table 2 it is apparent that the variance parameters of the raw measure-
ments are not significantly affected by the ambient temperature. The standard
deviations of the sensors B+B 40 and B+B 50 are in both jobs very similar. for
B+B 60, there is a significant change in the standard deviation between both
measurement sessions. This is presumably caused by deployment of another
A/D converter whereas the two other prototypes remained the same.

Interestingly, although all of the prototypes consist of components of the
same type and are configured the same way, the amount of noise introduced by
the hardware varies (compared to each other) significantly. When comparing
the variances between the three sensors, one can see, that the B+B 40 introduces
the most noise to the signal in both measurements. This might be caused by
the inappropriate treatment of the hardware to which the sensor was subjected
to before it was furnished with a protective housing.
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Figure 22: Job 124: Difference between the series that were filtered by moving
average and the original series. Same procedure was used in job 126, where the
resulting graph looks very similar

6.3.6 Filtering

The main idea of filtering is to extract those data points where the tempera-
ture was stable. The data from the dynamic parts of the measurements (from
unstable intervals) deviate from a linear model that is formed by the data from
the stable intervals.

The stable intervals can be found by examining the first temporal derivative.
The first derivative represents the rate of change of a certain function. Based
on the first derivative one can declare some threshold value, that separates the
data set into stable intervals and unstable intervals. The values of the stable
intervals are then used for the fitting.
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(a) Derivatives of the unfiltered series (b) Derivatives of the filtered series

Figure 23: Whereas it is hard to distinguish any low frequency changes in (a),
where the derivative was taken from unfiltered series, deriving the series after
low pass filtering (median filter with kernel size 51) in (b) we can see clear spikes
marking the unstable intervals

However, the measured data were afflicted by high frequency measurement
noise, which made direct computation of the first derivative useless. (fig. 23a).
Therefore it was necessary to apply a low pass filter to the series to smooth
it first, before computing the derivative. This was done by median filter with
kernel size of 51.

Finding optimal kernel size of the low pass filter
Median filter is a low pass filter, that is well suited for eliminating high fre-
quency noise and works similarly to the above mentioned moving average filter.
Both filters work data-point-wise and compute either average or median of the
surrounding values. The kernel size defines, how many neighbouring values par-
ticipate on determining the new value for given data point. Is the kernel size
too large, it ’rounds off’ the series and on the other hand if the kernel size is too
small it might not remove the noise completely. The optimal kernel size can be
determined by displaying it’s impact on the series. This can be done with the
function argplot which plots the same function with different argument values
into one plot (fig. 24). After analysing figure 24 it seemed, that the optimal
result can be achieved with kernel size of 51. The advantage of the median filter
is, that it is not as susceptible to outliers as the average filter.

43



Figure 24: Median filter with different kernel sizes. Is the kernel size to small,
the high frequent noise is not fully filtered out and if the kernel is too large, the
series gets ’abraded’. The optimal kernel size this case is 51 (magenta line)

Once the series are smoothed, one can calculate the first derivative and
perform the threshold filtering, based on the threshold values determined by
the inspection of the first derivative (fig. 23b). The resulting series provides
the timestamps of the stable intervals. Data from the original, raw, unfiltered
series are then selected based on the stable-interval-timestamps and compacted
to a new series, that is used in the fitting procedure (fig. 25).

After analysing the graphs of derivatives of the filtered series (23b), we have
declared the intervals, where the first derivative was less than 0.1, as stable.
Unfortunately for the B+B 40 sensor in job 124 this filtering was insufficient as
the filtered values contained obviously unstable data at the end of the series,
where the sensor has failed. To exclude these values, we have simply eliminated
values under 8000 from the series. The filtered series with marked values in
stable intervals can be seen in figure 25. These series were used in the fitting
(fig. 25).
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Figure 25: Filtered series with highlighted stable intervals

6.3.7 Classification and equalisation

(a) Classification (b) Histogram of unequalised classes

Figure 26: Classification and equalisation of the B+B 50 second measurement.
In (a) we see the distinct classes and in (b) that the classes contain different
number of measurements

The experiment design as well as the before mentioned filtering have caused,
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Job 124 [DN] Job 126 [DN]
MP B+B 40 B+B 50 B+B 60 B+B 40 B+B 50 B+B 60

MP -10◦C - 0 0 0 0 0
MP 0◦C - 8000 2500 6000 9000 2500
MP 10◦C 9000 11500 6000 10000 12000 6500
MP 20◦C 13000 16000 10000 13500 15000 10000
MP 30◦C 17000 19000 14000 16000 18500 13500
MP 40◦C 21000 22500 17500 18500 21500 16500

Table 3: Manually set edges of the classes. The numbers denote the begin of
the range of a measurement point (MP) in corresponding job and sensor.

that there are distinct groups of measurements as figure 26 shows. These groups
have understandably formed around the six measurement points. However, the
groups do not contain the same number of measurements that act as a weight
of the measurements, which, if unaccounted for, can have distorting effect on
the fitting. Therefore the data set was classified into six classes (four classes
in case of the first measurement of the B+B 40) by dividing the codomains of
each series. The edges of the classes were set manually. The values are listed in
table 3. When the data set is classified, one has to equalise the classes, so that
there is the same number of measurements in every class i.e. the classes have
the same weight. This is done by removing random values from classes of the
series so, that all classes have the same amount of measurements, as the class
with the least values of each series. This way, every measurement point has the
same weight.

A drawback of the classification is the random data point selection. Since
there is a lot of possible combinations to select a subset of points from the class,
the evaluation script provides slightly different values. To address this problem,
it was established, that the effect of random selection is insignificant and was
continued with only one randomly selected data point set.

In order to quantify how the particular data point selection affects the re-
sults, the fitting has been run with different classification 10000 times for each
job. This is of course not even close to the number of all possible combinations.
However, the graphical representation of the whole data sets suggests no unex-
pected behaviour, as all the points lie relatively close to each other and therefore
it should not matter, which of the points are selected. The established variance
of the parameters from these 10000 samples can be seen in table 4. The values
in the table confirm, that the effect is not significant. The k parameter express,
how many DNs are equal to one ◦C. The standard deviation of the d (which
denotes the variance of the offset) is negligible in comparison to mean of k. The

standard deviation of the offset is equal to 4.59[DN ]
379.465[DN/◦C] = 0.012◦C which is

well below the best achieved accuracy.
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Job 124 Job 126
B+B 40 B+B 50 B+B 60 B+B 40 B+B 50 B+B 60

k
mean 379.46584121 368.21738237 367.79012857 371.09669509 351.62824391 369.45434297
std 0.10635212 0.05588487 0.09165659 0.09653273 0.04700436 0.04994227

d
mean 7132.69574298 9375.71746904 4157.76623035 7388.73496091 9739.56197789 4301.83836801
std 4.59214606 1.50416662 2.63424516 1.78281203 1.23893339 1.37569851

Table 4: Variance of the parameters regarding the random point selection. The
values were calculated from 10000 combinations for each job

6.3.8 Line fitting

Figure 27: Interpolating values for fitting. The round points designate true
measurements whereas the crosses denote an interpolated reference value. The
reference measurements are considered variance free, therefore are more suitable
for interpolation;

The fitting takes place in the voltage-temperature space. To eliminate the
temporal dimension of the both series, they had to be aligned to a single set of
timestamps. This can be done by choosing time stamps of one of the series and
interpolate the values of the other series to timestamps of the first series. Since
the values from the reference sensor are very stable (i.e. the values vary under
the resolution of the sensor) this series is much more suited for interpolation than
the observations series. So, to every time stamp of the observation series there is
a observation value from the sensor prototype as well as an interpolated reference
value from the reference sensor (fig. 27) This way the temporal dimension can
be neglected and therefore plotted in 2D graph.
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The characteristic line is derived from equation 1 as follows:

T (v) = kv + d (2)

where T is temperature in degrees Celsius, v is voltage in digital numbers, k
and d the characteristic line parameters that are to be computed.

The temperature T comes from the measurements of the reference sensor
and is considered as variance-free, whereas the voltages v come from the mea-
surements of uncalibrated sensors. Each of the two series is compacted into its
own vector ~T and ~V . By plugging these vectors into the equation 2 we get an
overdetermined system of linear equations

~T = m~V + b (3)

with unknowns m and b. Such system is solved by the means of adjustment
computation. However, in adjustment computation, the observations are func-
tion values of the unknowns which is in 3 not the case, as the reference ~T is
(inversely) formulated as function value of the observations ~V Therefore the
system has to be reformulated to

k~T + d = ~V (4)

which can be rewritten in matrix notation as:

A~x = ~L (5)

with:

A =


...

...
δ~L
δkinv

δ~L
δdinv

...
...

 and ~x =

(
k
d

)

where A is a design matrix, ~x vector of the unknowns (char. line parameters

k and d) and ~L the observations vector, that contains the measured voltages

(~L = ~V ) This is a common adjustment computation problem. The condition
that has to be satisfied in adjustment computation is, that the sum of the
squared residuals ~v (6) is minimal.

~vT~v → min (6)

Residuals are the differences between the calibrated series and the reference
series (9).

At first, one has to compute the intial estimates of the parameters. Since
we have two parameters, we have to pick two data points from the data set to
form a system of two equations with two variables that has a unique solution.
The solution of this system yields the estimates k0 and d0 for the unknowns k
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and d which are compacted into a vector ~x0 = (k0, d0)T . The two points can be
any pair from the data set. We have simply used the first and the last value for
the estimates.

With parameter estimate vector ~x0 we can compute the observations esti-
mate vector ~L0 as follows: ~L0 = A~x0. The parameter adjustments ~x can now
be computed as:

~x = N−1AT~l (7)

with normal equation matrix N = ATA and vector ~l = ~L − ~L0 The unknown
parameters we are looking for can be computed by adding the parameter ad-
justments to the estimates:

(k, d)T = ~xf = ~x0 + ~x (8)

The residuals ~v are then computed as:

~v = A~x−~l (9)

To ensure, that no errors occurred in the computations, we can perform
simple test by plugging in the adjusted parameters to the original functional
model (4) and comparing it with the adjusted observations ~Lf = ~L+ ~v:

A ~xf − ~Lf = ~0 (10)

If there were no errors in the fitting procedure, the expression above (10) should
be equal to zero vector. However, the values in the above mentioned expression
might not be exactly zero due to the floating point arithmetic in which case
these values should be considered as zero. In our case these values were smaller
than 10−15. Should we encounter greater numbers, it is possible, that the first
estimate was not accurate enough, in which case the fitting can be repeated
with the current adjusted parameters as the initial estimates. The fitting can
be repeated as many times as needed until the desired accuracy is reached
provided that the solution converges.

Residuals are essential for calculation of the variance of the unit weight a
posteriori, which is a parameter that is used to describe the quality of the fitting.
It is computed as follows:

s20 =
~vT~v

n− u
(11)

with n as number of observations and u as number of the parameters (in case
of a line u = 2) The greater the s20 the worse the fit.

The results of the fitting are displayed in figures 28 and 29.
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(a) Job 124: Char. line
of B+B 40

(b) Job 124: Char. line
of B+B 50

(c) Job 124: Char. line
of B+B 60

(d) Job 126: Char. line
of B+B 40

(e) Job 126: Char. line
of B+B 50

(f) Job 126: Char. line of
B+B 60

Figure 28: Characteristic lines

(a) Job 124: Residuals
B+B 40

(b) Job 124: Residuals of
B+B 50

(c) Job 124: Residuals of
B+B 60

(d) Job 126: Residuals of
B+B 40

(e) Job 126: Residuals of
B+B 50

(f) Job 126: Residuals of
B+B 60

Figure 29: Residuals of the fitting

6.4 Results of the experiment

If the computation of the characteristic line was successful, the computed pa-
rameters can be applied to the original uncalibrated series. This is done by
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Job 124 Job 126
Parameter B+B 40 B+B 50 B+B 60 B+B 40 B+B 50 B+B 60

Fitting line

k [DN◦C ] 379.412483 368.237310 367.747588 371.134370 351.653928 369.480376
d [DN ] 7135.547674 9374.440976 4157.484839 7386.632934 9739.557982 4300.846142
σk [DN◦C ] 7.681702 3.930066 11.088666 3.403352 3.337811 7.930835
σd [DN ] 213.308256 90.532302 255.850958 71.849100 74.598456 177.580140
s20 [DN2] 14670.056473 9003.733903 71540.779053 5344.322013 5893.212241 35597.911901

Difference overall
n 7621 10699 10717 8305 8786 8860

mean -0.1743 -0.2347 -0.0425 -0.0942 -0.1624 -0.1236
std 0.5431 0.8032 0.7923 0.6969 1.1930 0.7587

Difference stable
n 1488 2135 2523 1562 1555 2164

mean -0.0487 -0.0554 -0.2930 -0.0084 -0.0015 -0.1029
std 0.3709 0.2805 0.8875 0.2026 0.2101 0.5814

Difference [19 - 21]◦C
n 405 415 185 89 75 46

mean 0.0096 -0.1039 0.3860 -0.0381 -0.1078 0.2667
std 0.1708 0.1554 0.2445 0.2280 0.2745 0.1994

Table 5: Results of the fitting

solving (4) for ~T :

~T =
~V − d
k

(12)

Subsequently the calibrated series is compared to the reference series by
subtracting both series from each other. These series are essentially computed
in the fitting as well. The calibrated series corresponds to the adjusted obser-
vations vector ~Lf and the difference corresponds to residuals ~v. However, the
vectors from the fitting contain only values from the stable intervals, whereas
the difference between the reference series and the calibrated series contains
overall differences (i.e. even in the unstable intervals). The dynamic parts are
very easily observable in figures 30 (spikes of the green series) Table 5 contains
results of the fitting. Since we are again interested in the non-dynamical part
of the measurements, we have selected only those values that were in the stable
intervals computed in section 6.3.6 (difference stable). As mentioned before,
the prototypes are going to be deployed in the measurement lab with relatively
constant temperature around 20 degrees, the table 5 contains information about
the quality of the calibration especially in that interval (difference [19 - 21]◦C).

6.4.1 Interpretation

B+B 40
This sensor has failed in the first measurement as the temperature approached 0
◦C providing obviously incorrect data which had to be filtered out (fig. 21a blue
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(a) Job 124: Calibrated
B+B 40

(b) Job 124: Calibrated
B+B 50

(c) Job 124: Calibrated
B+B 60

(d) Job 126: Calibrated
B+B 40

(e) Job 126: Calibrated
B+B 50

(f) Job 126: Calibrated
B+B 60

Figure 30: Calibrated sensors

line). After the filtering, the result is not as good as the result of B+B 50 but
can be considered good compared to B+B 60. This result may be surprising
given the significantly greater variance of the values produced by this sensor
(table 2). In the second measurement the sensor has not failed and performed
even better than B+B 50.

B+B 50
From the figures 28 and 30 the most appealing results have been achieved by the
sensor B+B 50. This positive judgement is based on two facts: Unlike B+B 40,
B+B 50 has not failed in any of the measurement sessions and in comparison to
B+B 60, B+B 50 has a better fit than B+B 60. The consistence of solid results
in both measurement sessions contributes the most to the positive judgement.
The σ2

0 values in table 5 suggest the same, even though B+B 40 did perform
minisculely better in the second measurement.

However, values of overall differences suggest the contrary. Considering the
extent of the spikes of the green lines 30 which protrude the most by B+B 50.
This suggests, that the probe of the B+B 50 reacts to temperature variations at
slowest compared to the other probes. This might not be caused only by some
structural differences of the probes, but more likely by the placement inside
the climatic chamber. Unfortunately it was not documented, where exactly the
probe was positioned. If the unstable data are filtered out, the B+B 50 is the
most consistent sensor with in average the smallest standard deviation of the
residuals.
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B+B 60
Despite exhibiting the smallest measurement noise, the data collected by this
sensor aren’t obviously optimal. This is apparent from the figures 29 and after
taking a closer look from figure 28 and confirmed by the values in table 5
especially s20. The hardware parts (apart from the probe) of this sensor were
in both measurements kept outside of the chamber. This sensor has not been
provided by protective housing and prolonged cables. However this enabled us
to plug in another A/D converter. It seems, that the second converter performed
better, nevertheless the s20 was about ten times greater than the s20 of the other
sensors.

6.4.2 Hypotheses testing

Since the set up of the experiment was deliberately changed between the two
measurement sessions, a hypothesis testing was conducted in order to decide,
whether the changed set up of the experiment had some significant effect on
the results. The testing is based on comparison of the fitting parameters of the
sensors between the measurement sessions.

A null hypotheses H0 have been formulated as follows:

H0 : k126 − k124 = 0 and H0 : d126 − d124 = 0 (13)

with alternative hypotheses

H0 : k126 − k124 6= 0 and H0 : d126 − d124 6= 0 (14)

For the test statistics t was used following relationship:

t =
dp√
σ2
dp

≈ tn−4,0.975 (15)

with
dp = k126 − k124 resp. dp = d126 − d124

and

σ2
dp = σ2

k124 + σ2
k126 resp. σ2

dp = σ2
d124 + σ2

d126

and

n = n124 + n126

(16)

where n1 and n2 are number of observations from both fits that participated on
the fitting. The variances of the parameters (σ2

k, σ
2
d) are located on the main

diagonal of the variance-covariance matrix a posteriori Cxx which is computed
during the fitting as part of the stochastic model. The computed test statistics t
is then compared to tn−4,0.975 (quantile of the t-distribution with n−4 degrees of
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freedom and 5% probability of error). If |t| > tn−4,0.975 then the null hypothesis
H0 is rejected in favour of alternate hypothesis HA.

However, to be able to formulate the hypothesis test this way, a condition
of s20,124 = s20,126 (variances of unit weights are equal) must be satisfied. If that
is not the case, a weight matrix P has to be formed so, that the condition is
satisfied. This is done by multiplying the P matrix (per default an unit matrix)

by the ratio of the variances of the unit weight
s20,124
s20,126

.

6.4.3 Deployment of another A/D Converter

To examine whether it is possible to deploy another A/D converter of the same
type in the sensor circuit without recalibration, a hypothesis test (section 6.4.2)
was conducted for the B+B 60 sensor, since this prototype was deployed with
different A/D converters. The outcome of the test determines whether the
separate fitting line parameters are significantly different or not. After satisfying
the condition, the test statistics tk and td (15) were calculated.

tk = 2.352690022

td = 8.835176443

and

tn−4,0.975 = 1.960

(17)

Since tk and td are greater then tn−4,0.975, both null hypotheses are rejected in
favour of HA, therefore it is concluded the parameters are significantly different.

This means, that it is unfortunately not possible to replace an A/D convert-
ers (even of the same type) in the circuit without recalibrating the prototype.
From figure 31 one can see, that the two lines are offset about a 0.5 ◦C, which
is caused by greater difference in the d parameter. In comparison to the other
prototypes (figures 32a and 32b), the difference in k parameter is not so severe
and can not therefore be so easily observed in figure 31.

However, this outcome was not expected and is rather surprising. In order to
provide a more conclusive evidence the experiment should be repeated several
more times.

6.4.4 Effect of the ambient temperature on performance of the sen-
sors

Same hypothesis test as in previous section (6.4.2) was conducted with the B+B
40 and B+B 50 prototypes. In the first measurement, there were not only the
probes, but also other hardware parts (except for the controlling computer)
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Figure 31: B+B 60

left inside the chamber, whereas in the second measurement only the probes
were kept inside the chamber. The hypotheses test determines, whether the
ambient temperature has an significant effect on the measurement or not. After
satisfying the condition, the test statistics tk and td (15) were computed:

tk,bb40 = −22.28837983 and tk,bb50 = −16.637937926

td,bb40 = −75.85838160 and tdbb50 = 72.9792743397

and

tn−4,0.975 = 1.960

(18)

These values provide a very strong evidence against all null hypotheses H0

and therefore the alternative hypotheses HA were accepted. The alternative
hypotheses state, that the ambient temperature has indeed a significant effect
on the measurement. This might be explained by the shrinking and expanding
of the hardware parts. The severity of the effect can be easily spotted in figures
32a and 32b as the red and blue lines diverge from one another. However,
analogously to the conclusions drawn in section 6.4.3, the experiment should be
repeated to increase the validity of these conclusions.
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(a) B+B 40 (b) B+B 50

Figure 32: Using calibration parameters from other jobs. The blue-ish lines represent the series calibrated with parameters
calculated from their own measurements, whereas the red-ish lines show the calibration of the series with parameters that were
gained from the other measurement series

7 Summary

7.1 Implementation of the framework

In this thesis, a concept of a framework for multi purpose sensor networks was
presented and implemented.

For the data acquisition and communication between the network compo-
nents was used Robot Operating System (ROS). The author has developed a
ROS package that standardises the data acquisition process so that values from
different kinds of sensors or value providers can be received by a single program.
This simplifies the data storage as the program reformats incoming data into a
common format.

The network is controlled by a web application which makes the usage of
the sensor network even easier and user friendlier, as it can be accessed from
any device and from anywhere, provided, that the sensor network is connected
to the internet. The web application does not contain an evaluation tools. It is
only used for data collection and raw data inspection and export.

56



To demonstrate the operation of the framework, the author has conducted a
calibration of three temperature sensor prototypes built on our institute. Apart
from finding the calibration parameters of the prototypes, author also tested
two hypotheses. The summary of the experiment can be found in following
section 7.2

7.2 Calibration experiment

The experiment set out with three goals:

1. Find parameters of the characteristic lines of the sensors

2. Test, whether we can use the same calibration line parameters for two
different amplifiers and A/D converters of the same type.

3. Examine the effect of the temperature on the hardware parts of the pro-
totypes.

We have managed to determine parameters of the characteristic lines of the
sensors B+B 40 and B+B 50 with an accuracy of 0.2 ◦C. For the B+B 60
we have been able to determine the parameters only to 0.56 ◦C accuracy. In
planned temperature range in which the sensors are going to be deployed, we
have been able to reach even better accuracies up to 0.15 ◦C.

From the evaluated data we have concluded, that it is unfortunately not
possible to change individual components of the sensor without having to recal-
ibrate the sensor. Not even when the components are of the same type.

Our data have lead us to conclusion that the surrounding temperature prob-
ably has some effect on the measurement. However, one would have to conduct
the experiment few more times to find out, whether it is the environment tem-
perature or some other parameter causing the different outcomes.

8 Outlook

Although not all features of the framework have been implemented yet, the
conducted experiment has shown, that the framework is operable. However,
the claims of the author about a multi purpose functionality of the framework
are yet still to be proven. The author is of that opinion, that a considerable
amount of effort is still needed in order to finish the framework.

It would be also useful to integrate evaluation tools to the framework. This
poses yet greater challenge, as the evaluation of the all kinds of data need
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completely different tools. In order to truly incorporate these tools into the
framework, one would have to program the tools so, that they can be modularly
added to the framework without having to edit already existing code.

Since the Igros Web Application stores the number of measurements it has
made to produce one value and the standard deviation of those values, it is
planned, to include these a priori information about the measurements them-
selves in the fitting process. However, this will require significant changes reps.
extension of the evaluation module.

The both repositories, in which the both igros packages and the evalua-
tion module are located in are planned to be published in the departments Git
Repository as soon as they are finished.
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